Monthly Archives: Luty 2012

3.3. Wszechświat cykliczny – Twierdzenie o powrotach

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

Twierdzenie Poincarego:

W systemie punktów materialnych pozostających pod działaniem sił, które zależą jedynie od położenia w przestrzeni, raz zachodzący stan ruchu, określony przez konfigurację i prędkość, z biegiem czasu raz jeszcze, a nawet nieskończenie wiele razy, będzie musiał powracać z dowolnym przybliżeniem, jeżeli założyć, że zarówno współrzędne, jaki i prędkości będą rosły w nieskończoność.

Wnioski z twierdzenia Pouncarego były zbyt mocną pokusą, by ich nie zastosować do spekulacji na temat losów wszechświata. Jednak taka idea wszechświata jest w pewnym sensie sprzeczna z drugą zasadą termodynamiki.

Problem ten jednak wyjaśnił Boltzmann. Prawa termodynamiki mają statystyczny charakter i to jedynie w długiej skali czasowej.

Przestrzenna zamkniętość byłaby geometrycznym odpowiednikiem idei izolowanego układu termodynamicznego, a oscylujące modele Friedmana stanowiłyby relatywistyczną realizację cykliczności świata.


3.2. Wszechświat cykliczny – Wszechświaty oscylujące

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

Idea świata pulsującego, przechodzącego przez nieskończony ciąg „początków” i „końców” była od dawna obecna w historii myśli ludzkiej. Realizowała myśl o świecie wiecznym, tłumaczyła sam siebie.

Wśród rozwiązań znalezionych przez Friedmana znajduje się nieskończenie wiele rozwiązań przedstawiających światy oscylujące. Cykl rozpoczyna się od początkowej osobliwości. Potem następuje ekspansja, aż do osiągnięcia maksimum, a potem zaczynają zbliżać się do siebie, aż do końcowej osobliwości. Nie jest możliwe przedłużenie równań poza osobliwości. W istocie jest to jedno „pulśnięcie”.

Na tej zasadzie wyobrażano sobie nieskończoną liczbę cykli. Przypuszczenia te popierano z nadzieją, że potwierdzi je przyszły rozwój teorii.


3.1. Wszechświat cykliczny – Problem początku

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

Stało się oczywiste, ze nie da się utrzymać wieczności wszechświata. Wszechświat nie jest statyczny, lecz dynamiczny, a to generuje zagadnienie początku.  Skoro wszechświat się rozszerza to dzisiejsza materia i energia wszechświata musiała znajdować się w stanie gigantycznego ściśnięcia.

W naukowej kosmologii idea początku jest niepożądana, także z czysto metodologicznych względów. W równaniach dynamicznych obowiązuje zasada determinizmu. Równania jakich użył Friedman do opisu ewolucji modeli kosmologicznych są układami dynamicznymi w sensie fizyki klasycznej, a mimo to klasyczne wyjaśnienie ewolucji kosmologicznej załamuje się w nich. Nie można wyliczyć stanów wszechświata „przed początkiem”.

W modelach Friedmana jeżeli czas dąży do początku to średnia gęstość materii, ciśnienie i temperatura dąży do nieskończoności. Wprowadza to do fizyki „niefizyczne” elementy. Z tej racji na określenie „początku” pojawiającego się w modelach kosmologicznych przyjęła się nazywać osobliwość początkowa. Co stanowi nie lada problem.


2.6. Kłopoty z wiecznością wszechświata – Kryzys filozofii Einsteina

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

Gęstość materii w modelu de Sittera była równa zeru. Teoretycznie zero gęstości to jednak co innego niż nawet bardzo mała gęstość.

Paradoks rozwiązał rosyjski amtematyk i metrolog Aleksander Aleksandrowicz Friedman który znalazł całą klasę przestrzennie jednorodnych i izotropowych rozwiązań Einsteina, w których rozwiązania Einsteina i de Sittera były szczególnymi przypadkami.

W kosmologii jest jak we wszystkich innych działach fizyki: można konstruować wiele modeli i dopiero doświadczenie musi zadecydować, które z nich najlepiej odpowiadają rzeczywistości świata.

Huble dorzucił swoje prawo. Na jego podstawie można było policzyć wiek wszechświata. Teoria Einsteina, że wszechświat miał powstać „sam z siebie” legł w gruzach.


2.5. Kłopoty z wiecznością wszechświata – Rozszerzająca się pustka

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

w 1917 r. de Sitter opublikował pracę, w której przedstawił nowe kosmologiczne rozwiązanie równań Einsteina. W rozwiązaniu tym gęstość materii równa się zeru. Innymi słowy, model de Sittera jest pusty, a mimo to struktura czasoprzestrzenna jest w nim dobrze określona. Zasada Macha nie jest spełniona. Świat de Sittera jest pusty, ale jego przestrzeń rozszerza się.

Doświadczenia potwierdziły te obliczenia.


2.4. Kłopoty z wiecznością wszechświata – Wszechświat i filozofia

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

„W konsekwentnej teorii względności nie powinno być bezwładności względem ‚przestrzeni’, lecz tylko bezwładność jednych mas względem drugich”. Bezwzględność względem przestrzeni oznaczałoby, że masa ciała jest jego absolutną własnością. Jedynym rozsądnym wyjściem jest założenie, że masa danego ciała jest niejako indukowana przez wszystkie inne masy we wszechświecie (Zasada Macha).

Ponadto Einstein przyjął, ze wszechświat jest zamknięty, przez co uniknął warunków brzegowych (wszystkie uzasadnienia powinny być zamknięte we wszechświecie).

Einstein sądził, że „problem kosmologiczny” został rozwiązany.


2.3. Kłopoty z wiecznością wszechświata – Pierwszy model Einsteina

Źródło: “Ostateczne wyjaśnienie wszechświata” – Michał Heller

Pola Einsteina są układem równań różniczkowych, a więc pojawia się problem warunków brzegowych. Wśród astronomów toczył się spór o rozkład materii. Einstein z uwagi na stabilność przestrzeni przyjął równomierny rozkład gwiazd.

Einstein, aby zachować możliwość nieskończonego wszechświata dodał do swoich równań człon ze stałą.

Powstał model Einsteina